SD180726-020 page 1 of 2

Regulatory Compliance Testing

PharmLabs San Diego Certificate of Analysis

Sample HIP100 PASS

Delta9 THC 1.00%

THCa ND

Total THC (THC + THCa) 1.00%

COC: 2e32cb16-4cc5-4eed-a0d0-7ed000b835d6

Sample ID SD180726-020 (31898)	Matrix Edible (Other Cannabis Good)	Sample Size 8.0 un	Batch Size 977.0 un	Batch ID/Lot ID N8206W874
Distributor License C12-18-0000017-TEMP		Address 962 87th Ave Oaklo	and, Ca 94621	Name The Plant LLC
Cultivator/Manufacturer/Microbusiness License C1	2-18-0000017-TEMP	Address 962 87th Ave Oaklo	and, Ca 94621	Name The Plant LLC
Sampled Jul 26, 2018	Received Jul 26, 2018		Reported Aug 07, 2018	
Analysis everyted CAN DES MIRNIG DES E	VI I BI		Unit Mass (a	100.0

CAN - Cannabinoids Analysis PASS Analyzed Aug 01, 2018 | Instrument HPLC-VWD | Method SOP-001

The expanded Uncertainty of the Cannabinoid analysis is approximately ${\it F.806}\%$ at the 95% Confidence Level

Analyte	LOD mg/g	LOQ mg/g	Result %	Result mg/g	Result mg/Unit	
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND	ND	
Cannabigerol (CBG)	0.001	0.16	ND	ND	ND	
Cannabidiol (CBD)	0.001	0.16	ND	ND	ND	
Cannabinol (CBN)	0.001	0.16	ND	ND	ND	
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	0.10	1.00	100.00	
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	NT	NT	NT	
(6αR,9S)-Δ10-Tetrahydrocannabinol ((6αR,9S)-Δ10)	0.015	0.16	NT	NT	NT	
(6aR,9R)-Δ10-Tetrahydrocannabinol ((6aR,9R)-Δ10)	0.007	0.16	NT	NT	NT	
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND	ND	
Total THC (THCa * 0.877 + Δ9THC)			0.10	1.00	100.00	•
Total CBD (CBDa * 0.877 + CBD)			ND	ND	ND	
Total Cannabinoids Analyzed			0.10	1.00	100.00	

MIBNIG - Microbial Analysis PASS Analyzed Jul 31, 2018 | Instrument Plating | Method SOP-007

Analyte	LOD LOQ	Result CFU/g	Limit	Analyte	LOD LOQ	Result CFU/g	Limit
Shiga toxin-producing Escherichia Coli		Negative	ND per 1 gram	Salmonella spp.		Negative	ND per 1 gram

UI Unidentified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
<LOQ Detected
-ULQL Above upper limit of linearity
-CFU/g Colonyl Forming Units per 1 gram
TNTC Too Numerous to Count

DCC license: C8-0000098-LIC DEA license: RP0611043 ISO/IEC 17025:2017 Acc. L17-427-1

SD180726-020 page 2 of 2

Regulatory Compliance Testing

PES - Pesticides Analysis PASS
Analyzed Aug 02, 2018 | Instrument LC/MSMS GC/MSMS | Method SOP-003

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Aldicarb	0.0078	0.02	ND	0.0078	Carbofuran	0.01	0.02	ND	0.01
Dimethoate	0.01	0.02	ND	0.01	Etofenprox	0.02	0.1	ND	0.02
Fenoxycarb	0.01	0.02	ND	0.01	Thiachloprid	0.01	0.02	ND	0.01
Daminozide	0.01	0.03	ND	0.01	Dichlorvos	0.02	0.07	ND	0.02
Imazalil	0.02	0.07	ND	0.02	Methiocarb	0.01	0.02	ND	0.01
Spiroxamine	0.01	0.02	ND	0.01	Coumaphos	0.01	0.02	ND	0.01
Fipronil	0.01	0.1	ND	0.01	Paclobutrazol	0.01	0.03	ND	0.01
Chlorpyrifos	0.01	0.04	ND	0.01	Ethoprophos (Prophos)	0.01	0.02	ND	0.01
Baygon (Propoxur)	0.01	0.02	ND	0.01	Chlordane	0.04	0.1	ND	0.04
Chlorfenapyr	0.03	0.1	ND	0.03	Methyl Parathion	0.02	0.1	ND	0.02
Mevinphos	0.03	0.08	ND	0.03	Abamectin	0.03	0.08	ND	0.3
Acephate	0.02	0.05	ND	5	Acetamiprid	0.01	0.05	ND	5
Azoxystrobin	0.01	0.02	ND	40	Bifenazate	0.01	0.05	ND	5
Bifenthrin	0.02	0.35	ND	0.5	Boscalid	0.01	0.03	ND	10
Carbaryl	0.01	0.02	ND	0.5	Chlorantraniliprole	0.01	0.04	ND	40
Clofentezine	0.01	0.03	ND	0.5	Diazinon	0.01	0.02	ND	0.2
Dimethomorph	0.02	0.06	ND	20	Etoxazole	0.01	0.05	ND	1.5
Fenpyroximate	0.02	0.1	ND	2	Flonicamid	0.01	0.02	ND	2
Fludioxonil	0.01	0.05	ND	30	Hexythiazox	0.01	0.03	ND	2
Imidacloprid	0.01	0.05	ND	3	Kresoxim-methyl	0.01	0.03	ND	1
Malathion	0.01	0.05	ND	5	Metalaxyl	0.01	0.02	ND	15
Methomyl	0.02	0.05	ND	0.1	Myclobutanil	0.02	0.07	ND	9
Naled	0.01	0.02	ND	0.5	Oxamyl	0.01	0.02	ND	0.2
Permethrin	0.01	0.02	ND	20	Phosmet	0.01	0.02	ND	0.2
Piperonyl Butoxide	0.02	0.06	ND	8	Propiconazole	0.03	0.08	ND	20
Prallethrin	0.02	0.05	ND	0.4	Pyrethrin	0.05	0.41	ND	1
Pyridaben	0.02	0.07	ND	3	Spinosad A	0.01	0.05	ND	3
Spinosad D	0.01	0.05	ND	3	Spiromesifen	0.02	0.06	ND	12
Spirotetramat	0.01	0.02	ND	13	Tebuconazole	0.01	0.02	ND	2
Thiamethoxam	0.01	0.02	ND	4.5	Trifloxystrobin	0.01	0.02	ND	30
Acequinocyl	0.02	0.09	ND	4	Captan	0.01	0.02	ND	5
Cypermethrin	0.02	0.1	ND	1	Cyfluthrin	0.04	0.1	ND	1
Fenhexamid	0.02	0.07	ND	10	Spinetoram J,L	0.02	0.07	ND	3
Pentachloronitrobenzene	0.01	0.1	ND	0.2					

RES - Residual Solvents Analysis PASS
Analyzed Aug 06, 2018 | Instrument GC/FID with Headspace Analyzer | Method SOP-006

LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
0.4	40.0	ND	5000	Butane (But)	0.4	40.0	ND	5000
0.4	40.0	70.7	3000	Ethylene Oxide (EthOx)	0.4	0.8	ND	1
0.4	40.0	ND	5000	Ethanol (Ethan)	0.4	40.0	ND	5000
0.4	40.0	ND	5000	Acetone (Acet)	0.4	40.0	ND	5000
0.4	40.0	14.4	5000	Acetonitrile (Acetonit)	0.4	40.0	7.5	410
0.4	0.8	ND	1	Hexane (Hex)	0.4	40.0	ND	290
0.4	40.0	ND	5000	Chloroform (Clo)	0.4	0.8	ND	1
0.4	0.8	ND	1	1-2-Dichloroethane (12-Dich)	0.4	0.8	ND	1
0.4	40.0	ND	5000	Trichloroethylene (TriClEth)	0.4	0.8	ND	1
0.4	40.0	ND	890	Xylenes (Xyl)	0.4	40.0	NT	2170
0.2	0.5	ND						
	LOD ug/g 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	LOD LOQ U9/9 U9/9 U9/9 U9/9 U9/9 U9/9 U9/9 U9/	LOD LOQ Result ug/g	LOD ug/g LOQ ug/g Result ug/g Limit ug/g 0.4 40.0 ND 5000 0.4 40.0 70.7 3000 0.4 40.0 ND 5000 0.4 40.0 ND 5000 0.4 40.0 ND 5000 0.4 40.0 14.4 5000 0.4 0.8 ND 1 0.4 40.0 ND 5000 0.4 40.0 ND 5000 0.4 40.0 ND 890	LOD ug/g LOQ ug/g Result ug/g Limit ug/g Analyte 0.4 40.0 ND 5000 Butane (But) 0.4 40.0 70.7 3000 Ethylene Oxide (EthOx) 0.4 40.0 ND 5000 Ethanol (Ethan) 0.4 40.0 ND 5000 Acetone (Acet) 0.4 40.0 14.4 5000 Acetonitrile (Acetonit) 0.4 0.8 ND 1 Hexane (Hex) 0.4 40.0 ND 5000 Chloroform (Clo) 0.4 40.0 ND 5000 Trichloroethque (12-Dich) 0.4 40.0 ND 5000 Trichloroethque (TriClEth) 0.4 40.0 ND 890 Xylenes (Xyl)	LOD ug/g LOQ ug/g Result ug/g Limit ug/g Analyte LOD ug/g 0.4 40.0 ND 5000 Butane (But) 0.4 0.4 40.0 70.7 3000 Ethylene Oxide (EthOx) 0.4 0.4 40.0 ND 5000 Ethanol (Ethan) 0.4 0.4 40.0 ND 5000 Aceton(Acet) 0.4 0.4 40.0 ND 5000 Aceton(EthOx) 0.4 0.4 40.0 ND 500 Aceton(EthOx) 0.4 0.4 40.0 ND 1 Hexane (Hex) 0.4 0.4 40.0 ND 5000 Chloroform (Clo) 0.4 0.4 0.8 ND 1 1-2-Dichloroethane (12-Dich) 0.4 0.4 40.0 ND 5000 Trichloroethylene (TriClEth) 0.4 0.4 40.0 ND 890 Xylenes (Xyl) 0.4	LOD ug/g LOV ug/g Result ug/g Limit ug/g Analyte LOD ug/g LOD ug/g LOD ug/g 0.4 40.0 ND 5000 Butane (But) 0.4 40.0 0.4 40.0 70.7 3000 Ethylene Oxide (EthOx) 0.4 0.8 0.4 40.0 ND 5000 Ethanol (Ethan) 0.4 40.0 0.4 40.0 ND 5000 Aceton(Ethan) 0.4 40.0 0.4 40.0 ND 5000 Aceton(Ethan) 0.4 40.0 0.4 40.0 ND 5000 Aceton(Ethan) 0.4 40.0 0.4 40.0 ND 500 Aceton(Itile (Acetonit) 0.4 40.0 0.4 0.8 ND 1 Hexane (Hex) 0.4 40.0 0.4 40.0 ND 5000 Chloroform (Clo) 0.4 0.8 0.4 40.0 ND 5000 Trichloroethylene (TriClEth) 0.4 0.8	LOB vg/g LOQ vg/g Result vg/g Limit vg/g Analyte LOD vg/g LOQ vg/g Result vg/g 0.4 4.0 ND 5000 Butane (But) 0.4 40.0 ND 0.4 4.0 70.7 3000 Ethylene Oxide (EthOx) 0.4 40.0 ND 0.4 4.0 ND 5000 Ethonol (Ethon) 0.4 40.0 ND 0.4 40.0 ND 5000 Acetonite (Acetonit) 0.4 40.0 ND 0.4 40.0 11.4 5000 Acetonitrile (Acetonit) 0.4 40.0 ND 0.4 40.0 ND 5000 Chloroform (Clo) 0.4 40.0 ND 0.4 40.0 ND 5000 Chloroform (Clo) 0.4 0.8 ND 0.4 40.0 ND 1 -2-Dichloroethylene (TriClEth) 0.4 0.8 ND 0.4 40.0 ND 5000 Trichloroethylene (TriClEth) 0.4 0.8 ND<

FVI - Filth & Foreign Material Inspection Analysis PASS Analyzed Aug 06, 2018 | Instrument Microscope | Method SOP-010

and great the great and a transfer of the control o						
Analyte / Limit	Result	Analyte / Limit	Result			
> 1/4 of the total sample area covered by sand, soil, cinders, or dirt	ND	> 1/4 of the total sample area covered by mold	ND			
> 1 insect fragment, 1 hair, or 1 count mammalian excreta per 3g	ND	> 1/4 of the total sample area covered by an imbedded foreign material	ND			

LBL - Edible and Topical Analysis PASS Analyzed Jul 30, 2018

Analyte	Claimed mg/g	Quantified mg/g	Claimed mg/Unit	Quantified mg/Unit	Delta %
Claimed THC	1.00	1.00	100.0	100.00	0.00

UI Unidentified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
4.0Q Detected
>ULOL Above upper limit of linearity
CFU/g Colonyl Forming Units per 1 gram
TNTC Too Numerous to Count

DCC license: C8-0000098-LIC DEA license: RP0611043 ISO/IEC 17025:2017 Acc. L17-427-1

